

Monitoring and Assessing the effects of Environmental Flows: the VEFMAP approach

JA Webb, MJ Stewardson, YE Chee, P Cottingham, ESG Schreiber

enterprise environment education

Victorian Environmental Flows Monitoring and Assessment Program (VEFMAP)

- Partnership between managers and scientists
- Major Aims
 - Maximizing ability to detect ecosystem-level responses to environmental flows
 - Get creative
 - Doing so with the highest level of scientific integrity
 - Peer review
 - Publication

The Approach

- Development of compatible monitoring programs across the state
 - Hypothesis based (conceptual models)
 - Prioritise monitoring effort based on
 - Conceptual understanding
 - Expected ability to detect a response
- Statewide analyses using Bayesian hierarchical models, and where possible combining data from different rivers

Why Bayesian Hierarchical Modelling?

- BACI methods generally not applicable
 - Shortage of Control and Reference Sites
 - eFlows do not have a Before/After boundary
- Data are messy
- Often sparse
- In general, don't conform to requirements of familiar frequentist analyses

- Bayesian Hierarchical Modelling (BHM)
 - More flexibility with models
 - Better ability to combine data in analyses,
 strengthening conclusions
- This has caused some unease
 - Trialling framework in 2007

Implementation

Why BHM?

- Interested in regression slope (β) at the site level, which should be similar
 - But few data and much unexplained variability at each site
 - Site-level estimates vary widely and can be very uncertain

Bayesian Statistics - Bayes' Formula

Likelihood function: driven by data

Prior Probability: Level of belief in the model before data collection

Total probability of the data occurring

Non-informative prior distribution

Site 2: β = -0.03 ± 0.17

Site 3: β = 0.48 ± 0.62

Non-informative prior distribution vs. hierarchical priors

Site 2: $\beta = -0.03 \pm 0.17 \rightarrow 0.08 \pm 0.14$

Site 3: $\beta = 0.48 \pm 0.62 \rightarrow 0.20 \pm 0.21$

No prior data used, just the expectation that the sites are related

- Sites with less data / greater uncertainty more affected
- Results for data-rich sites will be practically unaffected

Testing the analytical framework

- Need to demonstrate efficacy of BHM before large scale analysis of data in 2010
 - Possible analyses driven by data availability
 - Not answering eflows questions of primary interest
- Models applied to existing data
 - Salinity (EC) in Glenelg and Wimmera rivers
 - Fish (Australian Smelt) in the Thomson River

Effect of Flow on Salinity

- What is the relationship between flow and EC?
 - Pretty poor!
- Lots of data, but highly autocorrelated
 - Model needs to take advantage of this

salinity = previous salinity + flow effects + non-flow effects

Conceptual model → statistical model

Hypothesise

- Background' rate of salinity increase
- Rate of salinity decrease proportional to flow
 - Scale according to summer low flow recommendation, which often aim to 'maintain' or 'improve' water quality

$$EC_{i} = EC_{i-1} - k_{1} \frac{Q_{i}}{Q_{R}} + k_{2}$$

- Parameter of main interest
 - $-p(k_1 > 0)$ "flow reduces EC"

Implementation and Results

- 8938 'summer' EC measures, 10 sites, 2 rivers
- Modelled at site, river and multi-river hierarchies

Mara biorgraphical

		iviore nierarchical		
		Sites	Sites(Rivers)	Sites(Rivers(State))
River	Site Name	$p(k_1 > 0)$	$p(k_1 > 0)$	$p(k_1 > 0)$
Glenelg	Fulham Bridge	1.00	1.00	1.00
	Harrow	0.82	0.82	0.82
	Burkes Bridge	0.99	0.98	0.98
	Dergholm	0.67	0.64	0.64
	Sandford	0.58	0.57	0.57
	Dartmoor	0.00	0.00	0.00
Wimmera	Walmer	0.10	0.10	0.11
	U/S Dimboola	0.20	0.24	0.24
	Lochiel Railway Br.	1.00	1.00	1.00
	Tarranyurk	1.00	1.00	1.00

- Sensible results for Glenelg (except Dartmoor)
- Wimmera results harder to interpret
- Possibility of model inadequacies (e.g. saline fronts increasing EC)

Australian Smelt (Retropinna semoni)

- Non-diadromous
- Non 'flood-specialist'
- Little floodplain, runner or anabranch habitat in the Thomson
 - Pre-spawning condition of adults probably has little effect
 - Concentrate on summer low flows and the slow-flow habitat for young fish

Characterising flow for habitat

- VEFMAP monitoring will measure slow flow habitat
 - But we don't have that yet
- Summer flows in the Thomson generally exceed recommendations
 - Highest: Reach 4a (2005-2006)
 - 149 ML d^{-1} ($Q_R = 20$ ML d^{-1})
- May expect this to negatively affect fish that need slow flow habitat for larvae and juveniles
- Characterise summer flow in terms of average proportion of recommendation

Analysis

Worries over fish data

Turbidity and flow on day of sampling reduce

sampling efficiency

 Include these effects in the model as covariates

Leads to uncertain 'data'

- Flow data availability
- Fish expected to respond at this scale
- Parameters of main interest
 - $-\beta$ at reach level
 - $p(\beta < 0)$ negative effect of high flow

$$Abund_1$$
 $Abund_2$ $Abund_3$
 \downarrow \downarrow \downarrow Adj_1 Adj_2 Adj_3
 \downarrow $Ravg$

$$Ravg = \alpha + \beta \cdot \frac{Q}{Q_R}$$

Implementation and Results

- 44 site-level estimates (5 reaches, 3 years)
- Modelled at reach and river levels

		More hierarchical		
		Reach	River	
Reach	Location	$p (\beta < 0)$	$p (\beta < 0)$	
2	Thomson Dam - Aberfeldy R.	0.44	0.73	
3	Aberfeldy R Cowwarr Weir	0.67	0.77	
4a	Old Thomson River	0.88	0.82	
4b	Rainbow Creek	0.21	0.74	
5	Rainbow Creek - Macalister R.	0.60	0.76	

- Largest effect in most flow-affected reach (4a)
- Weak positive effect in reach 4b (where Q < Q_R)
 - HM obscures this effect model inadequacy (we should regress against habitat rather than flow
- HM shows weak evidence of river-scale effects of high summer flows on abundance of Australian Smelt.

Synthesis

- Bayesian framework allows analyses not possible with frequentist techniques
 - Autocorrelation model for EC
 - Within analysis adjustment for Tu and dFlow for Smelt
- Different effects of hierarchical modelling
 - Driven by data availability
 - Very helpful for data-poor analyses
- Results highlight possible inadequacies in model structure
 - Continue development
 - But a very promising start

Where to now?

- Publish
- Complete implementation of monitoring programs
- Pray for rain
- Undertake further development work on model structures during 2008-09
- Major analysis of data 2010
- Review of program
 - Implementing changes based on lessons learned
 - Flow recommendations
 - Monitoring programs

Conclusions

 VEFMAP's cooperative approach is helping to establish compatible monitoring programs

 Bayesian Hierarchical Modelling shows promise in identifying the effects of flow on ecosystem response

Acknowledgements

Victorian DSE

 Jane Doolan, Paul Bennett, Paulo Lay, Jodi Braszell, Dave Crook, Wayne Koster

CMA Environmental Water Reserve Officers

Kathryn Stanislawski, Catherine Fox, Michelle Bills, Matt
 O'Brien, Mike Jensz, Hugh Christie, Elyse Riethmuller, Jodie Halliwell, Kylie DeBono, Scott Morath

Scientific Advisors

Alison King, Angela Arthington, Mark Kennard, Gerry Quinn,
 Barbara Downes, Wayne Tennant, Sam Lake, Jane Roberts,
 Terry Hillman, Leon Metzeling, Paul Boon, Paul Humphries

Sinclair Knight Merz

Andrew Sharpe, Bonnie Atkinson, Sam Hannon

