

Collie River Salinity Recovery improving water resource outcomes in a competing environment

Key Messages

Introduction

Collie River catchment

Multi-criteria analysis / benefit cost analysis

Option 600 mg/L target	Cost \$m	Cost \$m/GL	Social impact	Envir. impact	Implem- entation	Water avail. GL/yr
Pumping	107	5.8	Minor	Low	Complex	18.5
Upl. trees	23	1.4	Signif.	Low	Staged	16.5
Lwl. trees	32	1.8	Mod.	Low	Staged	17.5
Full divert	162	9.2	Low	Low	Non-sta.	17.6
P.div+pump	128	7.0	Low	Low	Non-sta.	18.3
Pump+trees	45	2.5	Low	Low	Staged	17.7
P.div to void	17	1.0	Low	Poss.	Non-sta.	17.8

Introduction - Complex catchment

- Power generation
- New private coal-fired power stations
- Collie town
- State Forest and private plantation.
- 2 Dams Wellington and Harris Water to IWSS from Harris Dam
- Dryland salinity in eastern farming areas
- Irrigation from Wellington
 - ranges from 3340–5200 ha
 - water sales 30–33 GL
 - water allocation 68 GL
 - avge salinity ~900 mg/L

Water Resource Recovery Approach

Catchment management

- Clearing bans
- Afforestation and purchase properties (with Commonwealth)
- Scour and trial saline water diversion.

Clear goals

- From Salinity Recovery to Water Recovery
- Target for 2015 to return to potable water quality in Wellington Dam

Partnership with community

- Recovery Teams include landowners, government agencies, local government, industry and other organisations
- Strong private sector interest

Recommended option:

50% diversion at Buckingham (via void to sea) with 4200 ha of upland trees and 3000 ha of lowland trees

Recovery strategy:

- engineering option for short term
- higher water use farming systems for long term

Recovery Plan: predicted salinity reductions of inflows to Wellington Dam

Component	Improvement (mg/L)	Cumulative improvement	Resultant Salinity (avge)
1996 land use	0	0	900
2007 land use	115	115	785
4.5 GL/yr diversion at CE	130	245	655
0.8 GL/yr diversion at CS	10	255	645
Farming systems	30	285	615

Schematic of river diversion

Trial diversion results

- partners: NAPSWQ, Harvey Water, Griffin Coal

Year	Diversion season	Volume diverted (GL)	Salt diverted (kt)	Reduced salinity at Mungalup Gauging Station (mg/L)
2005	August - October	1	3	30
2006	May - October	2.1	13.4	418
2007	May - October	3	14.5	151

Trial diversion

Future Options – from salinity recovery to water resource recovery

- Salinity recovery potentially yields more water than it treats.
- Water Source Options report to Minister 2007 builds on salinity recovery strategies; identifies basis to:
- make improvements to irrigation,
- provide water to industry up to 30 GL/a, and
- develop a drinking water source of 5 -10 GL/a.

Results – of the DoW water resource recovery approach:

- A salinity recovery project which has attracted \$30m NAP funds.
- Trial diversions have confirmed the scale is such that it can make a difference.
- Key stakeholders are attempting to work together for the benefit of the whole.
- Signs of behaviour change among some landholders willingness to trial perennial pastures.
- Salinity recovery has led to water resource recovery with potentially a significant quantity of water made available.

Conclusions

- For capital cost of \$30m, salinity in Wellington Dam will be lowered to less than 650 mg/L.
- Recovery plan forms a building block for a potential major new water supply.
- Science has been applied to a complex problem, underpinned by extensive consultation, to plan the recovery of a major water resource important to the region and the state.

Thank you